Radish
Other common name(s): couchgrass, wheatgrass diet, agropyron
Scientific/medical name(s): Raphanus sativus. The common name "radish" is derived from Latin radix (root).

Description
The radish is an edible root vegetable of the Brassicaceae family that was domesticated in Europe in pre-Roman times. Radishes have numerous varieties, varying in size, color and duration of required cultivation time. There are some radishes that are grown for their seeds; oilseed radishes are grown, as the name implies, for oil production. Radishes are round to cylindrical with a color ranging from white to red. A longer root form, ideal for cooking, grows up to 15 cm (6 in) long, while the smaller, rounder form is typically eaten raw in salads. The flesh initially tastes sweet, but becomes bitter if the vegetable is left in the ground for too long.

Radish Microgreens?
Microgreens have been found to have nutritional concentrations higher in nutritional density than mature leaves (J Agric Food Chem 2012). In comparison with nutritional concentrations in mature leaves (USDA National Nutrient Database), the microgreen cotyledon leaves (the first leaves that emerge) possessed higher nutritional densities. In a recent study of 25 micro-greens, red cabbage, cilantro, garnet amaranth, and green daikon radish had the highest concentrations of ascorbic acids, carotenoids, phylloquinone, and tocopherols, respectively.

Radishes are a member of the Brassica family. Brassica vegetables are hypothesized to reduce the risk of cancer and to possess health-promoting properties. The benefits of a Brassica-based diet may be particularly expressed by eating microgreens, in which the glucosinolate content is higher than in mature vegetables. Glucosinolates release the corresponding isothiocyanates upon hydrolysis. An important and promising group of compounds that have a cancer-chemopreventive property are organosulfur compounds, such as isothiocyanates (ITCs).

Various ITCs are effective chemoprotective agents against chemical carcinogenesis in experimental animals. Several epidemiological studies also indicated that the dietary consumption of ITCs or ITC-containing foods inversely correlates with the risk of developing lung, breast, and colon cancers, providing evidence that they have a potential to prevent cancer in humans. Mechanistically, ITCs are capable of inhibiting both the formation and development of a cancer cell through multiple pathways; i.e. the inhibition of carcinogen-activating cytochrome P450 mono-oxygenases, induction of carcinogen-detoxifying phase 2 enzymes, induction of apoptosis, and inhibition of cell cycle progression.

A recent animal study looked at the effect of several different isothiocyanates from Daikon radish seeds and sprouts and found selective positive activity on three human colon carcinoma cell lines. The mixed extract from the radish had a more potent effect on cancer cells than did the individual isothiocyanates used in other studies, with no effect on normal human cells.

Radish microgreens may constitute a good source of bioactive compounds. However they are delicate and have a short shelf life. Skolex Radish microgreens are provided as the living plant in order to maximize shelf life and retention of beneficial bioactive compounds.

What to be aware of?
In general radishes and radish microgreens are safe and are eaten the world over. However, if you have a known sulfa or salicylate allergy then you should consult your physician and avoid radish along with many other vegetables.
Because microgreens are grown in soil and consumed raw, there may be minor amounts of bacteria or mold present depending on the growing conditions. Wash all microgreens thoroughly before eating, just as you would for any vegetable.

Relying on natural types of treatment alone and avoiding or delaying conventional medical care for cancer or other disease may have serious health consequences. Please consult your doctor.

References
See for example:


Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage Food Chemistry volume 151 May 2014